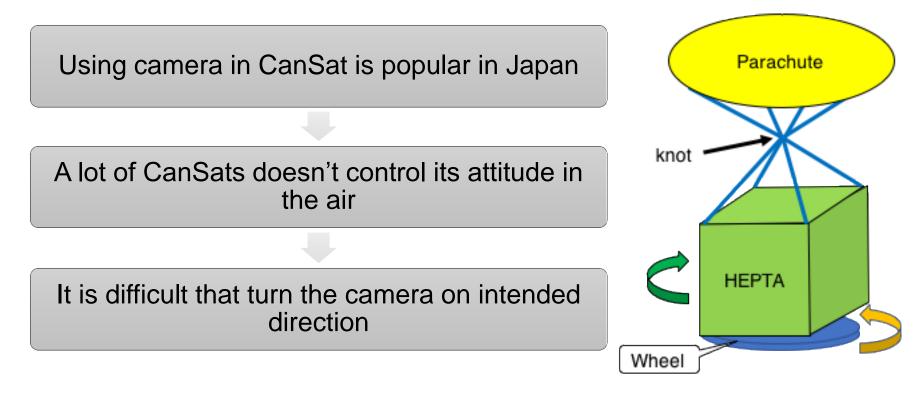


CanSat Leader Training Program (CLTP) - 8th Cycle

Final Presentation

Kenya Igarashi

SSSRC Osaka Prefecture University Japan


Content

- Mission Statement
- Mission Requirement(s)
- The Satellite System
- Bus System
- Payload System
- Mission Sequence
- Validation and Verification Plan/Testing
- Flight Results
- First Attempt
- Second Attempt
- Schedule
- Conclusion
- Recommendation and Future Plan (Mission)
- Feedback and Recommendation (CLTP)

Mission Statement

Attitude control system with reaction wheel

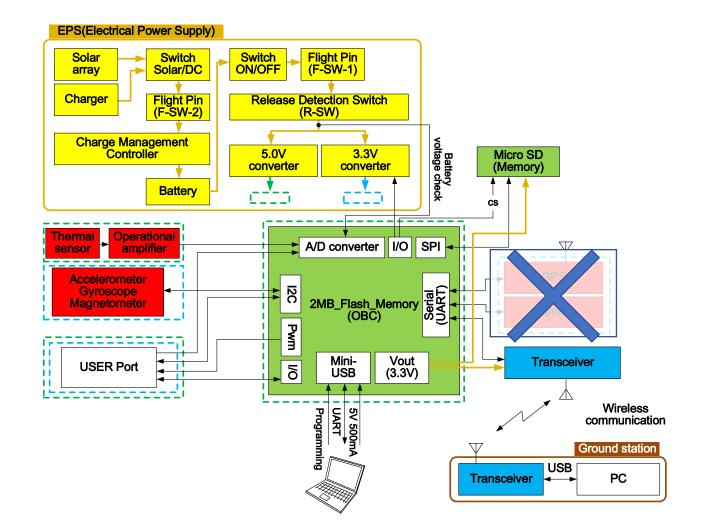
The range of camera mission will expand

Mission Statement

Minimum Success 50 % success	Fundamental functions & SurvivalTo open parachute and soft landingTo get data from sensors							
Full Success 100 % success	 Reaction wheel To rotate the wheel To get angular velocity data which shows that attitude is affected by the reaction wheel 							
Advanced Success	 Feedback control Feedback controlling the wheel's rotating speed by sensor data Stop the rotation of main structure 							

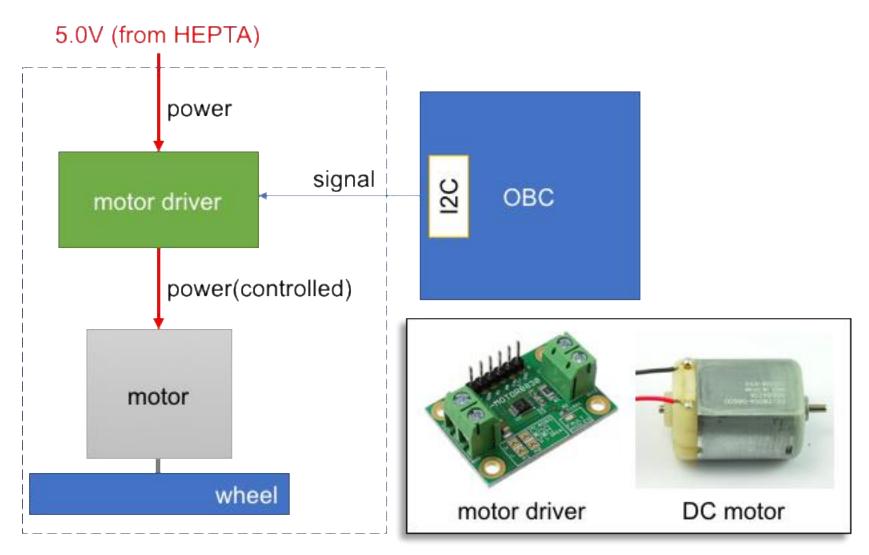
Mission Requirements

No.	Event	Requirement					
R-1		Not to work unintentionally					
R-2	(Test phase)	Reprogram the OBC					
R-3		Power supply from external source					
R-4		To check internal data in HEPTA					
R-5		Battery voltage is 4.0V or more					
R-6	Standby time phase	Connection between HEPTA and GS					
R-7		To start rotation of the wheel					
R-8		To stop rotation of the wheel					

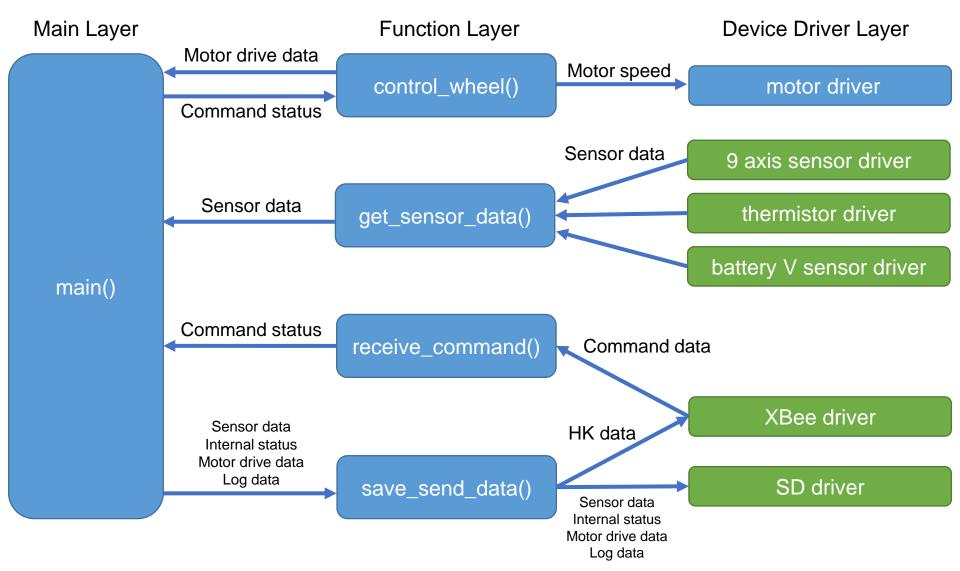


Mission Requirements

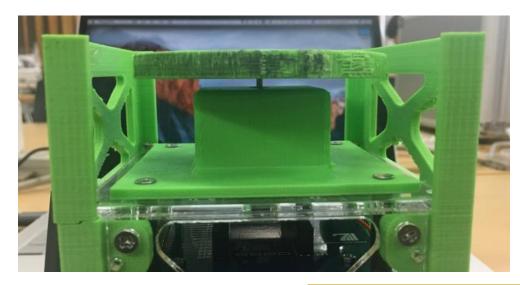
No.	Event	Requirement					
R-9		Not to rotate wheel unintentionally					
R-10	Launch phase	Connection between HEPTA and GS					
R-11	Mission phase	To start rotation of the wheel after release					
R-12		Rotation of the wheel affects HEPTA's angular velocity					
R-13		To get angular velocity and motor status					
R-14		To get log of software process					
R-15	Analysis phase	To get correlation between angular velocity and rotation of wheel					
R-16		To get log of software					

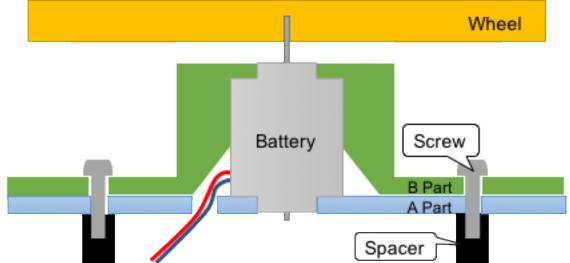


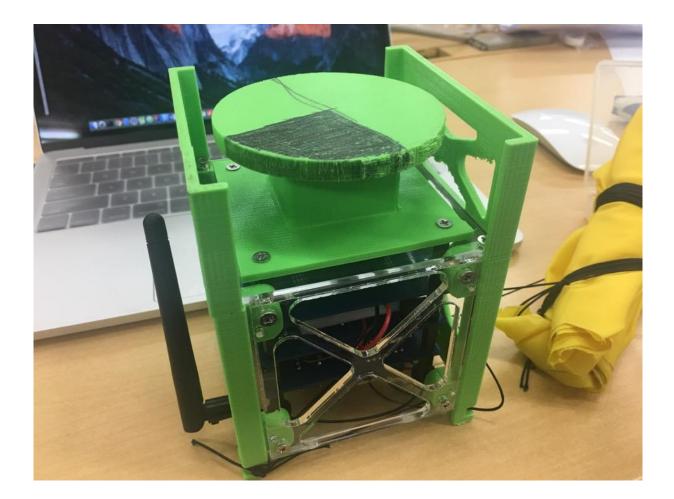
Bus System Architecture

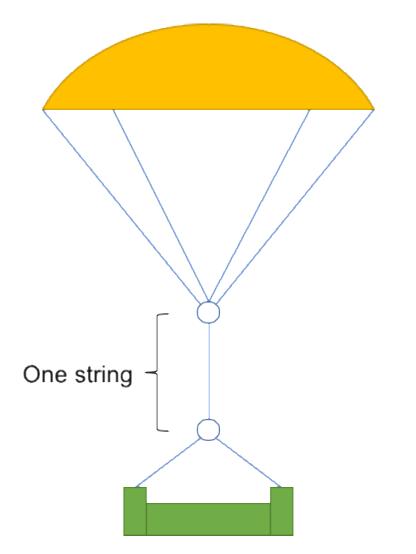


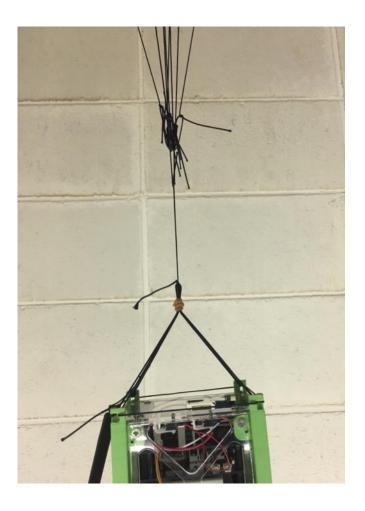
Payload Subsystem Architecture (hardware)




Payload Subsystem Architecture (software)


Payload Subsystem (structure)




Payload Subsystem (structure)

Parachute

Validation and Verification Plan/Testing

No.	Event	Requirement	Required Function	Verification Way		
R-1		Not to work unintentionally	- ON / OFF switch - Inhibits	Confirm LED is switched OFF		
R-2		Reprogram the OBC	Reprogram and restart OBC	Confirm loop count in telemetry data is restarted		
R-3	Preparation phase (Test phase)	To check HEPTA is working	 Power supply from external source Output internal information 	 Confilm battery is charged Confilm: LED brink telemetry to Xbee selial data to PC 		
R-4		To check internal data in HEPTA	Insert and eject the SD card	Insert and eject the SD card		
R-5		Battery voltage is 4.0V or more	Charge from external source	Confilm battery is charged		
R-6	Standby time phase	Connection between HEPTA and GS	 Send telemetry from HEPTA to GS Send command from GS to HEPTA 	 Confilm telemetry data is collect Confilm data telemetry is change by command 		
R-7		To start rotation of the wheel	Start rotation of the wheel	Check visually		
R-8		To stop rotation of the wheel	Stop rotation of the wheel	Check visually		

Validation and Verification Plan/Testing

No.	Event	Requirement	Required Function	Verification Way		
R-9		Not to rotate wheel unintentionally	Receive command and start rotation	Confirm start rotate wheel when receive command		
R-10		Connection between HEPTA and GS	 Send telemetry from HEPTA to GS Send command from GS to HEPTA 	 Confirm telemetry data is correct Confirm data telemetry is change by command 		
R-11		To start rotation of the wheel after release	Receive command and start rotation of the wheel	Confirm start rotate wheel when receive command by log data		
R-12		Rotation of the wheel affects Spin the wheel HEPTA's angular velocity Special Parachute		Running actually		
R-13		To get angular velocity and motor status	Save angular velocity, status of motor to the SD card	Confirm data in SD card is correct		
R-14		To get log of software process	Save log to the SD card	Confirm data in SD card is correct		
R-15		To get correlation between angular velocity and rotation of wheel	Save angular velocity, status of motor to the SD card	Confirm data in SD card is correct		
R-16		To get log of software	Save log to the SD card with loop count	Confirm data in SD card is correct		

Validation and Verification Plan/Testing

End to end test

Rehearsal of mission sequence

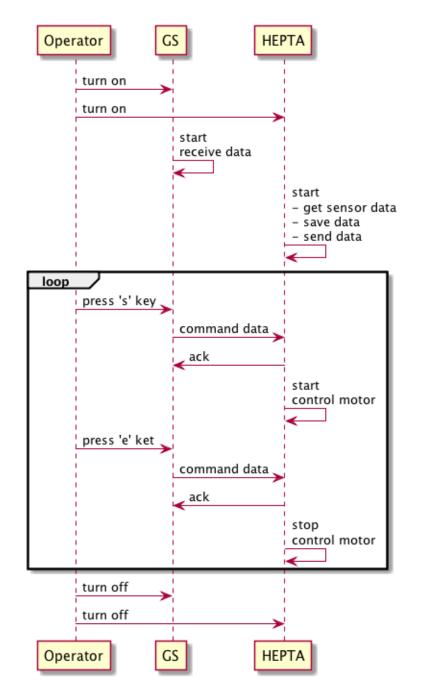
- All of functions were verified
- No bug
- ☑ 5 minutes long run
 - Battery capacity is enough for mission
 - No bug

Parachute test

Shock

• The string did not get cut or come untied

Deployment

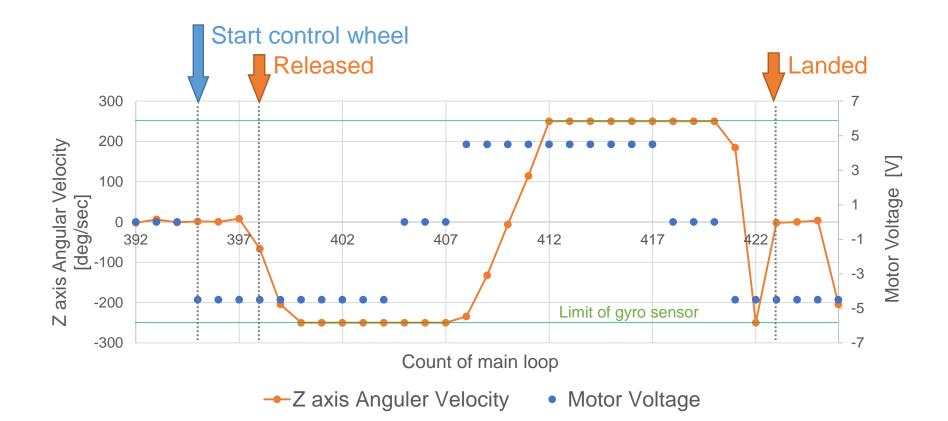


Mission Sequence

- 1. Preparation
 - i. Program finally
 - ii. Inserted SD card
- 2. Standby
 - i. Turned on
 - ii. Start send HK data (GS: Start receive HK data)
 - iii. Receive command and start motor control (GS: Send command)
 - iv. Receive command and stop motor control
 - v. Charged battery
- 3. Launch
 - i. Installed to POD
 - ii. Launched

- 4. Mission
 - i. Released from POD
 - ii. Deploy a parachute
 - iii. Receive command and stop motor control
 - iv. Landing
 - v. Receive command and stop motor control
- 5. Analysis
 - i. Turned off
 - ii. Eject SD card

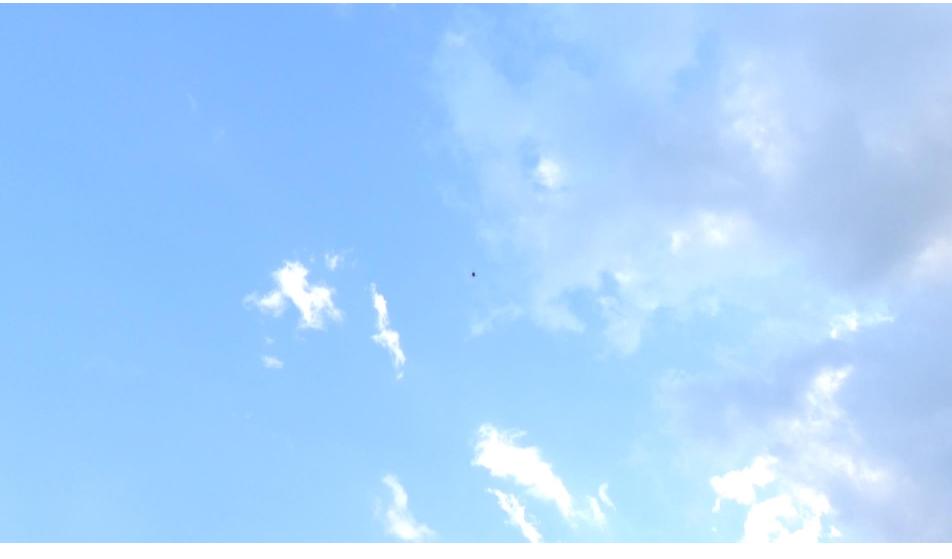
Algorithm:


The wheel repeats forward and reverse rotation

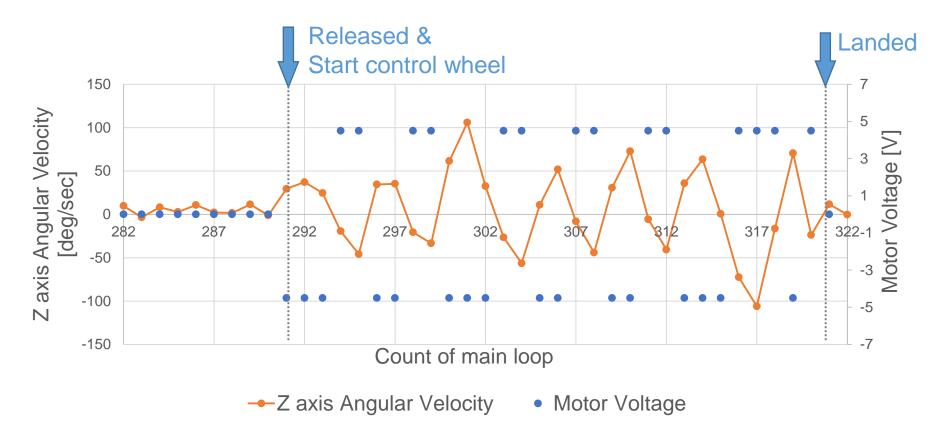
Angular velocity data shows that attitude was affected by the reaction wheel.

Minimum Success 50 % success	Fundamental functions & SurvivalTo open parachute and soft landingTo get data from sensors			
Full SuccessReaction wheel100 % success• To rotate the wheel• To get angular velocity data which shows that attitud is affected by the reaction wheel				
Advanced Success	 Feedback control Feedback controlling the wheel's rotating speed by sensor data Stop the rotation of main structure 			

Flight Result: Second Attempt


Algorithm:

The wheel counteracts the angular velocity of main structure



Flight Result: Second Attempt

Flight Result: Second Attempt

- The control algorithm went well
- The angular velocity was affected by the reaction wheel
- The vibration of angular velocity did not converge

Minimum Success 50 % success	Fundamental functions & SurvivalTo open parachute and soft landingTo get data from sensors					
Full SuccessReaction wheel100 % successTo rotate the wheel• To get angular velocity data which shows that attit is affected by the reaction wheel						
Advanced Success	 Feedback control Feedback controlling the wheel's rotating speed by sensor data Stop the rotation of main structure 	'/ o				

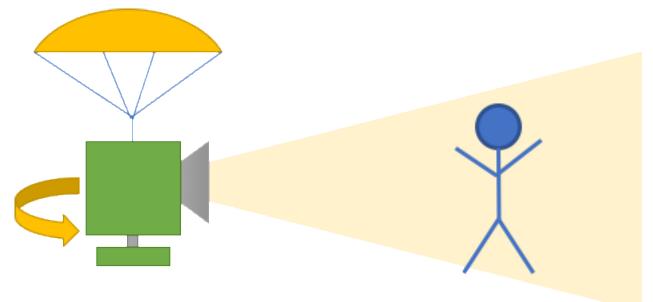
110% achieved!

Schedule

My project went on as scheduled

		11				1	0					10		
	11		12					13				14		
	9:00~12:00	13:00~15:30	15:30~18:00	9:00~	12:01	13:00~	~15:31	15:30~	~18:01	9:00~	12:02	13:00~15:32	15:30~18:02	
Create Schedule														
	MDR													
System design														
Development of motor drive system														
Software and circuit Integration														
Structure design														
Structure production														
System integration														
Test & debug										Therma	al Test		CDR	
Margin														
Experiment														

Conclusions


- My mission was to develop the attitude control system with reaction wheel for CanSat.
- I got angular velocity data which shows that attitude was affected by the reaction wheel.
- I implemented first step of feedback control algorithm and it worked well, but it was not perfect.
- 110% of mission success criteria was completed.

Recommendation and Future Work (Mission)

- 1. To develop reaction wheel
- 2. To implement perfect attitude control algorithm
- 3. To turn the camera on intended direction

Feedback and Recommendation (CLTP)

I learned about each sub-systems of satellite by reading lecture note and assembling HEPTA.

Through user board integration, I had experience everything in actual project in short time.

Too short to define mission.

Solution of the solution of

Opu & OPUSAT-KID

